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Abstract— During racing or vehicle performance evaluation,
a professional driver looks ahead and chooses the vehicle
controls to best maneuver the circuit or track in minimum
time. This process is carried out in a receding horizon fashion
around the circuit or track in a process that closely resembles
Model Predictive Control (MPC). Professional drivers quickly
build mental models of the circuit or track of how best to
exploit its features in order to negotiate the full maneuver in
minimum time. In this article, we implement a method for
exploiting future preview information into a local solution of
a MPC which indirectly models a driver learning a particular
circuit or track. A hybrid cost MPC structure that is capable of
switching between two different driving styles is used to achieve
the incorporation of this future preview information. It will be
shown that this future preview information (beyond the local
MPC horizon) can help to alleviate some of the sub-optimal
behavior inherent in MPC. The concept is then demonstrated on
a chicane maneuver. The proposed scheme is compared against
the exact time-optimal control solution for this maneuver.

I. INTRODUCTION

Modeling lap time performance has been a rich topic
of research dating back as early as the 1930’s where [1]
credits Mercedes Benz with the first known application of
engineering tools used to model a race car negotiating a track
for minimum time. In the beginning, the driver’s influence
was neglected all together and the steady state performance
of the vehicle was all that was used to calculate lap time. As
research progressed, it was clear that the driver and transient
vehicle performance have a large influence on the problem
of minimum time maneuvering.

This led to the two stage optimization where a racing line
is first computed based on geometric optimization (maxi-
mizing radius of curvature or minimizing distance travelled)
[2], [3], evaluation of a vehicle model and optimizing a
parameterized curve for the racing line [4], or even driving
telemetry. Once the path has been determined, a driver will
attempt to track the desired trajectory in minimum time.
Techniques for this later stage are widely varying; however,
optimal path preview techniques rooted in the work [5] and
later refined in [6] are commonplace. Following a predefined
path in minimum time is a typical problem found in robotics
and [7] shows how the problem can be converted into a
convex optimization. This technique was expanded in [8] for
for simulations of vehicles. This approach is still widely used
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for application where realtime control (autonomous driving)
is paramount [9] and consists of an offline path planning and
an online path following stage.

An alternative to the two stage approach is combining
path planning and path following. This strategy assumes
the driver is a pure time-optimal controller and seeks to
find the optimum set of controls to minimize the objective
(lap time) subject to vehicle dynamic constraints and path
constraints. This approach dates back to the work in [10]
which can be considered the first significant formulation.
Once posed as a time-optimal control, two key solution
techniques are typically used. Indirect methods involve a
solution to first order necessary conditions via application
of Pontryagin’s Minimum Principle and deriving the adjoint
system equations. The indirect methods lead to two-point
boundary value problems [11] which can be quite arduous
to solve for complicated dynamics and constraints. Alternate
solution techniques are direct methods which aim to solve
the optimal control problem itself by transcribing the contin-
uous optimal control problem into a nonlinear programming
problem (NLP). Direct methods are typically used when
solving minimum time vehicle maneuvering problems and
these numerical techniques are reviewed in [12], [13].

To facilitate computations, an arbitrarily long maneuver
such as a racing circuit is typically broken down and solved
recursively over short segments either by multiple shooting
techniques [14] or Model Predictive Control (MPC) [15],
[16]. Orthogonal collocation techniques have furthered the
state of the art and a full racing circuit has been solved
via these techniques as shown in [17]. This topic has been
extended to include some key high fidelity effects such as
modeling additional vehicle control systems such as energy
recovery systems [18], a thermally dependent tire model [19],
and three dimensional road effects [20].

Most of the reviewed literature is geared towards time-
optimal driving (i.e., finding the absolute minimum maneu-
vering time) without considering how a real human driver
compares to an optimal controller. The analogy of assuming
that a driver is a true optimal controller with full knowledge
of all future path preview information is that a driver chooses
his/her control action on the start line based on how he/she
will cross the finish line. While a professional driver can
indeed learn a particular race circuit, it is more likely
that a driver will look ahead a particular preview distance
and choose his or her actions in order to best exploiting
the learned track features (learned through exploratory and
warmup laps) in a similar process to MPC. Modeling such
nuances of human drivers is not a new concept. In fact,
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[21] shows that realistic human control bandwidth limits
achievable maneuvering time.

The work in [22] attempts to address this problem with
robust optimal control. The work in [23], [24] shows how
boundary conditions and cost functions can be altered to
reproduce advance driving techniques. Although not strictly
motivated by minimum time maneuvering, [25] shows how
varying cost functions can represent different driving styles.
These literatures suggest that a true human driver model is
not merely a deterministic optimal controller with a fixed
cost function. Experience in testing and racing has shown
two different driving styles can lead to nearly identical lap
times.

In this paper, we propose to model a professional driver
with a hybrid cost MPC structure where the local/preview
horizon cost function is switched to approach minimal time
maneuvering for the track or circuit. We assume the driver
has two local modes, one that approximates minimum-time
driving and another that approximates maximum-velocity
driving. The driving style of maximizing-velocity is moti-
vated by the fact that MPC-based modeling does not consider
the entire circuit’s features and in some cases the MPC
is unaware that it is more appropriate to sacrifice time in
a particular short segment and maximize velocity in order
to minimize the complete maneuvering time. The hybrid
cost switching allows future path preview information to be
incorporated into the local MPC solution and some of the
sub-optimal properties of a fixed-cost MPC are alleviated.
We conjecture that a driver is able to change his/her driving
style around a particular circuit to best exploit its features
and minimize total maneuvering time.

This paper is organized as follows. In section II, the
vehicle model utilized in this research is described. Section
III includes details on the optimal control strategies that were
adopted to model the human driver and the reference time-
optimal solution. Section IV presents results obtained via the
different control strategies discussed in Section III. Finally,
conclusions are offered in Section V.

II. VEHICLE MODEL

For the purposes of this paper, a simple particle motion
vehicle model that is widely used in the area of autonomous
vehicles is employed [26]. This simple vehicle description
is capable of capturing first order vehicle dynamics in a
computationally efficient formulation. The vehicle consists
of a non-holonomic description of the center of gravity (CG)
motion constrained by a friction ellipse. The inputs u1, u2
represent the driver’s longitudinal and lateral control. These
inputs are then passed through first order lags as seen in
(1d,1e) and these equations are used to define the vehicle’s
longitudinal and lateral accelerations (at, an respectively).
The constants τan , τat are used to approximate the vehicle
dynamics.

The vehicle’s coordinate system is written in path intrinsic
coordinates, i.e., the planar motion is described as a lateral
deviation from the path centerline (ey) and heading angle
deviation (eψ) which is defined as the difference between the

path heading angle (ψs) and the vehicle heading angle (ψv).
This coordinate system allows for a convenient description
of the road width constraints (ey ≤ ey ≤ ey). The path itself
is defined from the path curvature (κ(s)) defined along the
path’s curve length often called station s.

The quantity vt represents the vehicle’s velocity at its
CG while ṡ represents the vehicle’s velocity along the path
and will be used later to transform the independent variable
from time to distance travelled along the path. The vehicle’s
motion can be seen in Fig. 1 and is defined as follows:

v̇t = at (1a)

ėψ =
an
vt

− vtcos(eψ)
κ(s)

1− eyκ(s)
(1b)

ėy = vtsin(eψ) (1c)
ȧt = 1/τat (u1 − at) (1d)
ȧn = 1/τan (u2 − an) (1e)

ṫ = 1 (1f)

ṡ =
vtcos(eψ)

1− κ(s)ey
(1g)

For compactness, we define x =[
vt eψ ey at an t

]T
as the state vector and

u ∈
[
u1 u2

]T as the control vector. As is commonly done
in the minimum maneuvering time literature, the system
is transformed from the independent variable time to path
distance traveled via the transformation shown in (2). This
way, the final value of the independent variable (in our
transformed system, path distance travelled) is a fixed-value
versus a parameter that must be optimized (as is the case in
the free final time problem).

dx

ds
=
dx

dt

dt

ds
=

ẋ

ṡ
= f(x(s), u(s), s) (2)

ṡ

y

x

ey

ρ

ψv

ψseψ
vvt

Path Centerline
Vehicle’s Path

ey

ey

Fig. 1. Particle motion model path intrinsic coordinates. Note that the
instantaneous curvature κ = 1/ρ is used in the formulation to alleviate
singularities found on a straight road where the radius of curvature (ρ)
tends toward infinity.
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III. OPTIMAL CONTROL MODELS

In general, an optimal control problem seeks to find the
state x ∈ Rn and control input u ∈ Rm that minimize a cost
functional. A general form of this cost, commonly referred
to as the problem of Bolza, can be written as:

J = Φ(s0, x(s0), sf , x(sf )) +

∫ sf

s0

L(s, x(s), u(s))ds (3)

For the purposes of this work, a sufficiently general
optimal control problem may be posed as:

min
u

J

s.t. dx
ds − f(s, x(s), u(s)) = 0
g(s, x(s), u(s)) = 0
h(s, x(s), u(t)) ≤ 0

gb(x(s0), x(sf ), u(so), u(sf )) = 0

(4)

Where f(·) ∈ Rn represents the system dynamics de-
scribed by (2). The function g(·) ∈ Rng and h(·) ∈ Rnh

represent the equality and inequality constraints, respectively.
The function h(·) will be used to place constraints on the
friction ellipse (a2n+a

2
t−a2max ≤ 0) and the lateral deviation

of the vehicle is bounded (ey ≤ ey ≤ ey) to constrain the
vehicle to operate within the predefined road width. The
function gb(·) ∈ Rngb refers to boundary constraints at the
start (s0) and finish (sf ).

A. Time-Optimal Solution - Reference Solution

The classic approach to the problem is to find the full
optimal control solution over the complete maneuver that
minimizes the cost function:

Jt =

∫ sf

s0

1

ṡ
ds = tf (5)

In general, this problem is quite difficult to solve for arbitrary
tracks; however, its solution offers a reference solution to
the hybrid cost MPC which will be described later. For our
purposes, the optimal control problem in (6) is solved via
orthogonal collocation methods (implemented in the software
package GPOPS-II [27]).

min
u

Jt

s.t. dx
ds − f(s, x(s), u(s)) = 0

a2n + a2t ≤ a2max
ey ≤ ey ≤ ey

(6)

B. MPC Approach

Model Predictive Control (MPC) is a receding horizon
approach that solves the full optimal control problem by
recursively solving short preview segments and advancing
forward (by a distance ∆s) until the full solution is ob-
tained (as seen in Fig. 2). Each segment is denoted with
superscript i and recursively solved by N segments until
the complete interval is solved. Because the MPC approach
neglects information outside of the local short horizon (future
preview information), the approach is inherently sub-optimal.
The benefits to MPC, however, are numerical stability since
the solution over a short segment is simpler than the full

problem. Because of this simplicity, the problem typically
results in significantly decreased computational cost. Also,
if the cost function can be expressed as a problem of least
squares (7) (a subset of the problem of Bolza), efficient
algorithms exist for solving this problem [28]. Therein,
a multiple shooting technique and Sequential Quadratic
Programming (SQP) is used to solve the underlying NLP.
Realtime nonlinear MPC (NPMC) that uses this algorithm
has been realized in [29] for small remote controlled vehicles
on a scale. In order to achieve a working NMPC controller,
weights (P,Q,R) and reference trajectory (xref ) for a least
squares cost (JLSQ) were tuned to approximate the true time-
optimal problem posed in (5). In other words, JLSQ was
tuned such that JLSQ ≈ Jt. The least squares cost is defined
as:

JLSQ = ∥x(sh)− xref (sh)∥2P︸ ︷︷ ︸
Terminal Cost

+

∫ sh

s0

{
∥x(s)− xref (s)∥2Q︸ ︷︷ ︸

State Cost

+ ∥u(s)∥2R︸ ︷︷ ︸
Control Cost

}
ds

(7)

where sh represents the distance of the MPC horizon. The
full MPC problem can be posed as follows:

min
ui

J iLSQ

s.t. dx
ds − f(si, x(si), u(si)) = 0

a2n + a2t ≤ a2max
ey ≤ ey ≤ ey
xi0 = x(sio)

si ∈ [si0, s
i
0 + sh], i = 1, 2, ..., N

(8)

s10
s20

sh∆s

Fig. 2. MPC solution approach.

In the proceeding subsections (III-B.1 and III-B.2), the
computationally efficient MPC framework will first be used
to achieve an approximation of the driving styles representing
both a time and velocity-optimal driver. Then, (in section III-
B.3) a hybrid cost structure will be used to optimally switch
between the time-optimal approximation and the velocity-
optimal approximation.

1) Approximate Time-Optimal MPC: Due to the complex
nature of the dynamics of the system, choices of MPC
weights are critical. As previously mentioned, in order to
utilize the efficient framework for solving the NMPC prob-
lem, the cost must be formulated in a least squares cost
(7). Therefore the choice of weights w = [P,Q,R] must be
chosen such that JLSQ ≈ Jt. In [29], the weighs were tuned
heuristically such that the weights on the terms involving the
state time were much larger than all other weights; only small
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JLSQ(wt) ≈ Jt JLSQ(wv) ≈ Jv

c(s) = 1

c(s) = 0

Fig. 3. Hybrid Cost MPC Structure.

weighting values were used as tracking penalties on the other
states. This was used to improve numerical reliability. This
led to a good approximation of time-optimal behavior. Rather
than relying on heuristic tuning to find appropriate weights,
the optimization problem posed in (9) was solved via a
genetic algorithm to find the optimal set of weights. This
solver, albeit computationally expensive, was a good choice
of optimizer due to its tolerance of the highly sensitive nature
of tuning these weights (wt) by solving the optimization
problem defined in (9). The weights wt are bounded by lower
and upper constraints, lb, ub respectively so that a reasonable
result is achieved.

min
wt=[P,Q,R]

Jt

s.t. Sub MPC problem (8)
lb ≤ wt ≤ ub

(9)

2) Approximate Velocity-Optimal MPC: Again, optimiza-
tion will be used to find the most appropriate weights for
our MPC problem; however, now, the goal is to represent a
driver maximizing velocity everywhere on the track. This is
similar to the problem posed [23] where the objective was
to maximize the corner exit velocity vt(sf ) to reproduce a
particular driving technique prevalent in rally racing. For our
velocity-optimal driver, the MPC weights (wv) were tuned
by solving (10) such that JLSQ ≈ Jv = −||vt||2. As with the
time-optimal approximation, the weights (wv) are bounded
by lb, ub.

min
wv=[P,Q,R]

Jv = −||vt||2

s.t. Sub MPC problem (8)
lb ≤ wv ≤ ub

(10)

3) Hybrid Cost MPC Driver: With good choices of
weights approximating a time-optimal (wt) and velocity-
optimal (wv) driver in this framework, it is desired to find
the optimal switching between operating modes (as shown
in Fig. 3 to minimize the total maneuvering time. For this, a
final optimization problem can be posed to find the optimal
switching (c) between driving styles. The decision variable,
c, is a binary vector such that c ∈ ZN2 , ci ∈ {0, 1}, i =
1, 2..., N where each MPC horizon’s (denoted as horizon i)
cost is defined as: J iLSQ =

{
(1− ci) · JLSQ(wt)

}
− ci ·

JLSQ(wv) to facilitate the switching between driving styles
over each horizon. In this optimization, the cost again is the
true time-optimal cost (5) which was the same as the problem
of finding weights for the time-optimal MPC approximation;
however, it will be shown in the results, that this hybrid
structure allows for a better maneuvering time than by ad-
justing weights alone. The problem posed in (11) is a mixed-

integer programming problem, and a genetic algorithm will
be used to find the appropriate sequence of driving styles c
at each location of the track. When the optimal switching
rule ci∗ = 0, the time-optimal approximation weights (wt)
are used in that local MPC solution and when ci∗ = 1, the
velocity-optimal weights (wv) are used. This switching is
also depicted in Fig. 3.

min
c

Jt

s.t. Sub MPC problem (8)
c ∈ ZN2 , ci ∈ {0, 1}, i = 1, 2..., N

(11)

This cascaded optimization results in an optimal switch-
ing rule (c∗(s)) which allows for the path information of
the full maneuver to be incorporated into the local MPC
segments and aims to represent a driver learning a particular
track/circuit to best exploit its features to minimize overall
maneuvering time. To summarize, the hybrid cost MPC
algorithm first finds the optimum MPC weights wt, wv for
each driving style and then performs a search over the whole
maneuver to find the optimum switching rule c∗ to minimize
the total maneuvering time.

IV. RESULTS

The preceding optimal control analysis was carried out
for a chicane type maneuver and nominal vehicle with
parameters described in Table II and the resulting trajectories
can be seen in Fig. 4. A comparison of the velocity traces
of the three different strategies (reference optimal control
solution (6), MPC time-optimal approximation (9), and the
hybrid cost MPC (11)) can be seen in Fig. 5. Note that the
maneuver takes place on the interval s ∈ [−50m, 750m],
where as the ”lap time” was calculated on the interval
stimed ∈ [0m, 650m]. This simulates a racing environment
where vehicle getting up to speed before timing starts and
allows the timing to stop before the maneuver does.

Fig. 5 shows the optimal switching rule between time
and velocity-optimal driving styles which is the direct out-
put of problem described in (11). The velocity trace and
control histories are also shown in Fig. 5. It is clear that
the control histories have regions where the MPC solution
chatters (between 1⃝, 2⃝ and 3⃝, 4⃝). This phenomena occurs
in the regions of the road where the curvature is changing
rapidly causing numerical issues with the MPC algorithm.
In an effort to retain computationally expediency, the MPC
algorithm only performs one quadratic approximation per
MPC horizon. The work in [30] provides justification of
why this is sufficient for most realtime NMPC applications;
however, because the full underlying NLP is not completely
solved, the first order necessary conditions may or may
not be fully satisfied at each time step. Thus, infeasible
solutions exist in these MPC results as seen in the friction
circle utilization plot of Fig. 6a. The filtered content of the
controller (shown as a solid line), however, correlates well
with the optimal reference solution. Moreover, it does indeed
show improvement on the traditional time-optimal MPC.

In order to further substantiate our claims, an alternate
MPC solver, (GPOPS-II [27]) was used to solve both the true
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time and velocity MPC problems (versus the LSQ cost used
in the previous solution). Because these results are orders of
magnitude higher in computational cost, using the outer loop
genetic algorithm to find the optimum switching rule was
not in the scope of this work. In order to show the hybrid
MPC cost can have improvements over the traditional time
optimal MPC, an alternate heuristically derived switching
rule can be used which will be referred to hereafter as the
split time switching rule. For this switching rule, the split
time of the time optimal and velocity optimal MPC solutions
were compared and when the velocity optimal solution was
gaining time, the switching was changed to velocity optimal,
otherwise it remained time optimal. More formally posed, the
split time rule can be written as:

∆t = t∗vt(s)− t∗t (s), c =

{
1, if ∆t

ds ≤ 0

0, otherwise
(12)

Clearly, there is no guarantee of optimality with this switch-
ing decision; however, it does demonstrate improvement over
the time optimal MPC. Fig. 7 shows the velocity trace
as well as the control inputs to the system as well as
the split time switching rule. Fig. 6b shows the friction
envelope constraints and that no violations exist since the
full underlying NLP is completely solved in this approach.

The results from all of the aforementioned simulations
can be found in Table I and demonstrate how a hybrid cost
MPC strategy helps circumvent some of the sub-optimality
inherent in an MPC solution. An improvement in maneuver-
ing time of just under 0.5s was found using the optimally
switched hybrid cost versus the fixed approximate time opti-
mal MPC. In terms of minimum-time maneuvering problems,
this is a substantial decrease in maneuvering time. Much like
a professional driver that can quickly learn a circuit or a
track with a few exploratory laps, the cascaded optimization
structure learns where it is best to switch between driving
styles c.
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V. CONCLUSIONS

In this paper, a hybrid cost MPC has been derived to
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TABLE I
RESULTS FROM SIMULATION APPROACHES.

Simulation Eqn. Time [s] Sub-optimality
Reference solution (6) 21.977 0.00%
MPC time opt. approx. (9) 22.787 3.69%
MPC velocity opt. approx. (10) 22.887 4.14%
MPC hybrid c∗ (11) 22.349 1.69%
MPC True time opt. 22.698 3.28%
MPC hybrid split time c (12) 22.591 2.79%

modeling drivers in ultra-high performance maneuvers. This
was accomplished by a concatenation of MPC controllers
representing driving styles of minimizing time and maxi-
mizing velocity over local segments. These controllers were
optimally switched along the maneuver length to represent
how a driver learning a particular circuit can exploit its
features as best as possible. Simulations of the strategy
applied to the chicane maneuver demonstrated that the hybrid
cost MPC was advantageous to the fixed cost MPC in
minimizing total time. This has broader implications in that
if future information (beyond the scope of the local MPC
segment) can be incorporated in the configuration of the
local MPC controller, a better overall solution can be found
through the full maneuver. The hybrid cost is only one vessel
to accomplish this goal and future research will look into
other possibilities for incorporating this information in the
local MPC solutions.

APPENDIX

TABLE II
PARAMETERS USED IN SIMULATIONS.

Parameter Description Units Value
τan First order lag of the vehicle s 0.075

normal acceleration
τat First order lag of the vehicle s 0.075

tangential acceleration
amax Bounding friction circle radius m/s2 10
Nu Number of control actions over 75

MPC horizon
sh MPC preview horizon m 150
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